
The biological activities and molecular effects of pterostilbene.
Modes/treatments | Model used | Mechanism | References |
Inflammation | |||
pterostilbene (1–10μM) | 3T3-L1 & RAW 264.7 coculture | ↓IL-6 & TNF-α secretion ↓COX-2, ↓iNOS, ↓IL-6, ↓TNF-α, ↓PAI-1, ↓CRP, ↓MCP-1, ↓resistin, ↓leptin, ↓Migration of macrophages toward adipocytes |
Hsu et al, 2013 [1] |
Pterostilbene (0.1–1μM) | HUVECs | ↓Monocyte binding, ↓sICAM1, ↓IL-8, ↓MCP-1, ↓sE-selectin, ↓p-eIF2α, ↓ICAM1, ↓MMP9, ↓CRP78 | Liu et al, 2016 [2] |
Breast cancer | |||
Pterostilbene (40–80μM) | MCF-7 | ↓Cell viability, ↑Apoptosis, ↑Caspase-3, ↑Bax, ↓Bcl-2, ↑ROS generation, ↓MMP, ↑AMACR | Chakraborty et al, 2010 [3] |
Pterostilbene (50–100μM) | MCF-7 & |
↓Cell viability, ↑Apoptosis, ↑PARP, ↑G1 phase arrest, ↓cyclin D1, ↓β-catenin, ↑autophagy, ↑LC3 II | Wang et al, 2012 [4] |
Pterostilbene (15–50μM) | MCF-7 | ↑Autophagy, ↑Beclin 1, ↑LC3 II, ↑ROS generation | Chakraborty et al, 2012 [5] |
Prostate cancer | |||
Pterostilbene (1–25μM) | LNCaP | ↓Cell viability, ↑G1 phase arrest, ↑CDNK1A, ↑CDNK1B, ↓prostate-specific antigen | Wang et al, 2010 [6] |
Pterostilbene (40–80μM) | PC-3 | ↑Apoptosis, ↑caspase-3, ↑Bax, ↓Bcl-2, ↑ROS generation, ↓MMP, ↑AMACR | Chakraborty et al, 2010 [7] |
Pterostilbene (40–100μM) | LNCaP | ↓Cell viability, ↑G1 phase arrest, ↑p53, ↑p21, ↑p-AMPK, ↓fatty acid synthase, ↓acetyl CoA carboxylase | Lin et al, 2012 [8] |
Pterostilbene (40–100μM) | PC-3 | ↓Cell viability, ↑apoptosis, ↑caspase-3, ↑Caspase-9, ↑p-AMPK, ↓fatty acid synthase, ↓acetyl CoA carboxylase | Lin et al, 2012 [8] |
Colon cancer | |||
Pterostilbene (1–30μM) | HT-29 | ↓Cell viability, ↓cyclin D1, ↓c-Myc, ↑PARP, ↓TNF -α, ↓IL-1β, ↓IFN-γ, ↓iNOS, ↓COX-2 | Paul et al, 2009 [9] |
Pterostilbene (0.004%) | AOM-induced colonic carcinogenesis rat | ↓Tumor multiplicity, ↓PCNA, ↓TNF-α, ↓IL-1β, ↓IL-4 | Paul et al, 2010 [10] |
Pterostilbene (50μM) | HT-29 | ↓β-catenin, ↓cyclin D1, ↓c-Myc, ↓IκBα,↓phosphorylation of p65 | Paul et al, 2010 [10] |
Pterostilbene (5–100μM) | HCT-116, HT-29, & Caco-2 | ↓Cell viability, ↓colony formation capacity, ↑apoptosis, ↑caspase-3, ↑PARP | |
Pterostilbene (50 ppm & 250 ppm) | AOM-induced colonic carcinogenesis mice | ↓Aberrant crypt foci, lymphoid nodules & tumors, ↓NF-κB, ↓iNOS,↓COX-2, ↑heme oxygenase-1, ↑Glutathione reductase, ↑Nrf2 | Chiou et al, 2011 [12] |
Pterostilbene (5–50μM) | COLO 205, HCT-116 & HT-29 | ↑Apoptosis, ↑caspase-3, -8, -9, ↓mTOR/p70S6K, ↓PI3K/Akt, ↓MAPKs, ↓p-ERK1/2, ↓p-JNK1/2, ↑autophagy, ↑LC3 II | Cheng et al, 2014 [13] |
Pterostilbene (10 mg/kg BW) | COLO 205 xenograft nude mice | ↓Tumor volume, ↓tumor weight, ↓COX-2, ↓MMP-9, ↓VEGF, ↓cyclin D1, ↑caspase-3 | Cheng et al, 2014 [13] |
Diabetes | |||
Pterostilbene (40 mg/kg BW) | Diabetic rats | ↓Blood glucose, ↓Glycosylated hemoglobin, ↑Hexokinase, ↓Glucose-6-phosphatase, ↓Fructose-1,6-bisphosphatase | |
Pterostilbene (4μM & 8μM) | INS-1E (insulin-secreting rat insulinoma) β-cell line | ↑Nuclear Nrf2, ↑HO-1, ↑CAT, ↑SOD, ↑GPx, ↑Bcl-2, ↓Bax, ↓caspase-3 | Bhakkiyalakshmi et al, 2014 [15] |
Pterostilbene (15 mg/kg & 50 mg/kg BW) | Wistar rats fed an obesogenic diet | ↓HOMA-IR, ↑GLUT4, ↑p-Akt/total Akt ratio, ↑cardiotrophin-1, ↑glucokinase | Gómez-Zorita et al, 2015 [16] |
Dyslipidemia | |||
Pterostilbene (40 mg/kg BW) | Streptozotocin-nicotinamide induced type II diabetes rats | ↓VLDL-C, ↓LDL-C, ↑HDL-C, ↓triglycerides, ↓free fatty acids, ↓phospholipids | Satheesh & Pari, 2008 [17] |
Pterostilbene (15 mg/kg & 30 mg/kg BW) | Wistar rats fed an obesogenic diet | ↓ Adipose tissue weight, ↓ ME, ↓FAS, ↓G6PDH, ↓CPT-1a, ↓ACO | Gómez-Zorita et al, 2014 [18] |
Pterostilbene (10–50μM) | H4IIEC3 cells | PPARα ligand, ↑PPARα gene expression | Rimando et al, 2015 [19] |
Aging | |||
Pterostilbene (0.004% or 0.016%) | Aged male Fischer rats (19-mo-old) | ↓ |
Joseph et al, 2008 [20] |
Pterostilbene (120 mg/kg diet) | SAMP8 mice | ↓The number of errors over 2-day radial arm water maze test, ↑MnSOD, ↑PPAR-α, ↓phosphorylated JNK, ↓PHF | Chang et al, 2012 [21] |
ACO=acetyl-
***********
References
***********
[1] Hsu CL, Lin YJ, Ho CT, Yen GC. The inhibitory effect of pterostilbene on inflammatory responses during the interaction of 3T3-L1 adipocytes and RAW 264.7macrophages. J Agric Food Chem 2013;61:602e10.
[2] Liu J, Fan C, Yu L, Yang Y, Jiang S, Ma Z, Hu W, Li T, Yang Z, Tian T. Pterostilbene exerts an anti-inflammatory effect
[3] Chakraborty A, Gupta N, Ghosh K, Roy P. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol In Vitro 2010;24:1215e28.
[4] Wang Y, Ding L, Wang X, Zhang J, Han W, Feng L, Sun J, Jin H, Wang XJ. Pterostilbene simultaneously induces apoptosis, cell cycle arrest and
[5] Chakraborty A, Bodipati N, Demonacos MK, Peddinti R, Ghosh K, Roy P. Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway. Mol Cell Endocrinol 2012;355:25e40.
[6] Wang TT, Schoene NW, Kim YS, Mizuno CS, Rimando AM. Differential effects of resveratrol and its naturally occurring methyl ether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. Mol Nutr Food Res2010;54:335e44.
[7] Chakraborty A, Gupta N, Ghosh K, Roy P. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol In Vitro 2010;24:1215e-28.
[8] Lin VC, Tsai YC, Lin JN, Fan LL, Pan MH, Ho CT, Wu JY, Way TD. Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. J Agric Food Chem2012;60:6399e407.
[9] Paul S, Rimando AM, Lee HJ, Ji Y, Reddy BS, Suh N. Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prev Res 2009;2:650e7.
[10] Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B
[11] Nutakul W, Sobers HS, Qiu P, Dong P, Decker EA
[12] Takemoto JK, Remsberg CM, Davies NM. Pharmacologica
[13] Cheng TC, Lai CS, Chung MC, Kalyanam N, Majeed M, Ho CT
[14]
[15] Bhakkiyalakshmi E, Shalini D, Sekar TV, Rajaguru P, Paulmurugan R, Ramkumar KM. Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br J Pharmacol 2014;171:1747e57.
[16] Gomez-Zorita S, Fernandez-Quintela A, Aguirre L, Macarulla M, Rimando A, Portillo M. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: involvement of skeletal muscle and liver. Food Funct2015;6:1968e76.
[17] Satheesh MA, Pari L. Effect of pterostilbene on lipids and lipid profiles in
[18] Gomez-Zorita S, Fernandez-Quintela A, Lasa A, Aguirre L, Rimando AM, Portillo MP. Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J Agric Food Chem 2014;62:8371e8.
[19] Rimando AM, Khan SI, Mizuno CS, Ren G, Mathews ST, Kim H, Yokoyama W. Evaluation of PPARa activation by known blueberry constituents. J Sci Food Agric2016;96:1666e71.
[20] Joseph JA, Fisher DR, Cheng V, Rimando AM, Shukitt-Hale B. Cellular and behavioral effects of stilbene resveratrol
[21] Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA, Joseph JA, Casadesus G. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 2012;33:2062e71.