Stomach Cancer

J Agric Food Chem.2007 Sep 19;55(19):7777-85. Epub 2007 Aug 16.

Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells.

Pan MH1, Chang YH, Badmaev V, Nagabhushanam K, Ho CT.

Author information

Abstract

Pterostilbene, an active constituent of blueberries, is known to possess anti-inflammatory activity and also induces apoptosis in various types of cancer cells. Here, the effects of pterostilbene on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that pterostilbene was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Pterostilbene-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of pterostilbene-induced apoptosis was also investigated. The results show the caspase-2, -3, -8, and -9 are all activated by pterostilbene, together with cleavage of the downstream caspase-3 target DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Moreover, the results indicate that the Bcl-family of proteins, the mitochondrial pathway, and activation of the caspase cascade are responsible for pterostilbene-induced apoptosis. Pterostilbene markedly enhanced the expression of growth arrest DNA damage-inducible gene 45 and 153 (GADD45 and GADD153) in a time-dependent manner. Flow cytometric analysis indicated that pterostilbene blocked cell cycle progression at G1 phase in a dose- and time-dependent manner. Pterostilbene increased the p53, p21, p27, and p16 proteins and decreased levels of cyclin A, cyclin E, cyclin-dependent kinase 2 (Cdk2), Cdk4, and Cdk6, but the expression of cyclin D1 was not affected. Over a 24 h exposure to pterostilbene, the degree of phosphorylation of Rb was decreased after 6 h. In summary, pterostilbene induced apoptosis in AGS cells through activating the caspase cascade via the mitochondrial and Fas/FasL pathway, GADD expression, and by modifying cell cycle progress and changes in several cycle-regulating proteins. The induction of apoptosis by pterostilbene may provide a pivotal mechanism of the antitumor effects and for treatment of human gastric cancer.

PMID: 17696482